



ドローン・リモセンによる市民との協働

濱 侃 (千葉大学 理学研究科)

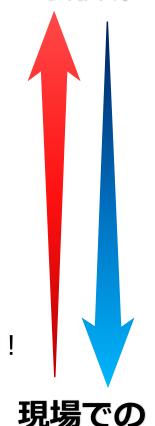
近藤 昭彦(千葉大学 環境リモートセンシング研究センター)

リモートセンシングの階層性と対象スケール

■ グローバル・リモートセンシング

◆SH:国際機関,研究者

◆SH:行政,研究者


■ ローカル・リモートセンシング

いつでも, どこでもモニタリングが可能に!

◆SH:市民,行政,企業

ドローン・リモセンでの取り組み

- ▶外来水草モニタリング
 - →ナガエツルノゲイトウ協働駆除作戦

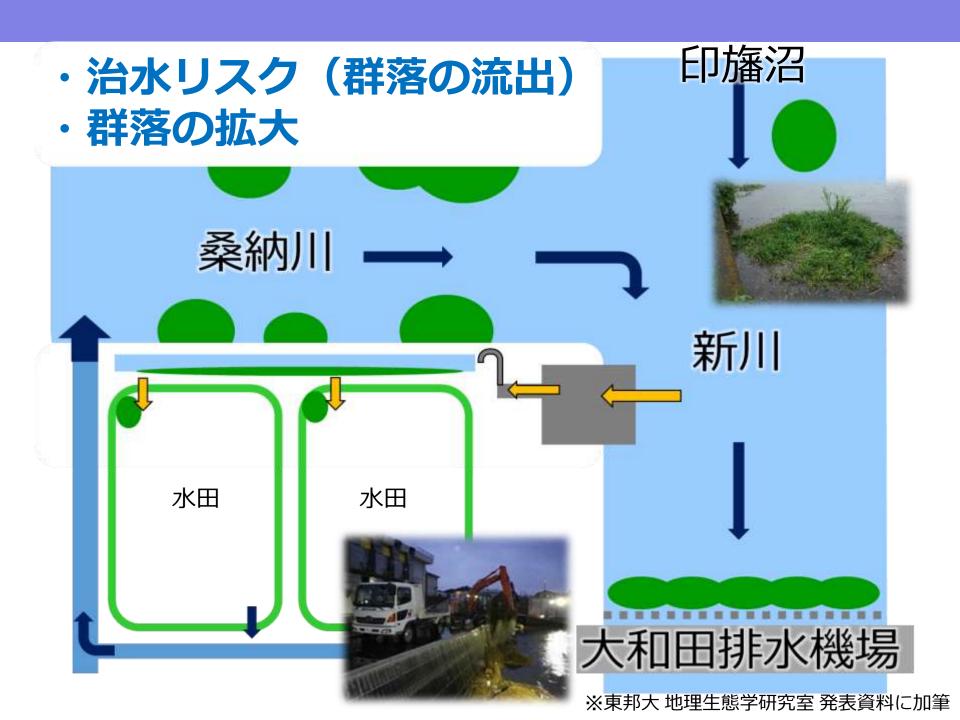
▶水稲モニタリング

→生産者との協働, 稲作技術の伝承

ナガエツルノゲイトウ協働駆除作戦

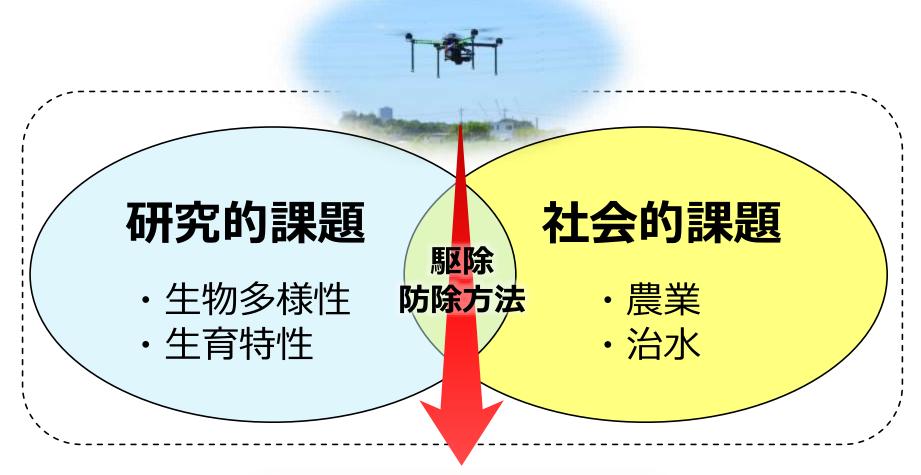
- ステークホルダーの協働による駆除作戦
- ▶ NPO, ボランティア, 行政, 大学・・・・

外来水生植物 ナガエツルノゲイトウ


- ▶特定外来生物
- ●印旛沼では1990年に確認(支流 鹿島川)
- →以降、印旛沼ネットワーカーの会が継続調査
- ■流域内で大繁殖 → 群落の流出,拡大
 - ◆ 治水リスクの上昇
 - ◆ 農作業への影響
 - ◆ 生物多様性への影響

笠井(2001),中村(2010)

印旛沼支流 桑納川 神崎川



問題、課題の解決に向けて

新技術(ドローン・リモセン)

問題,課題の解決へ

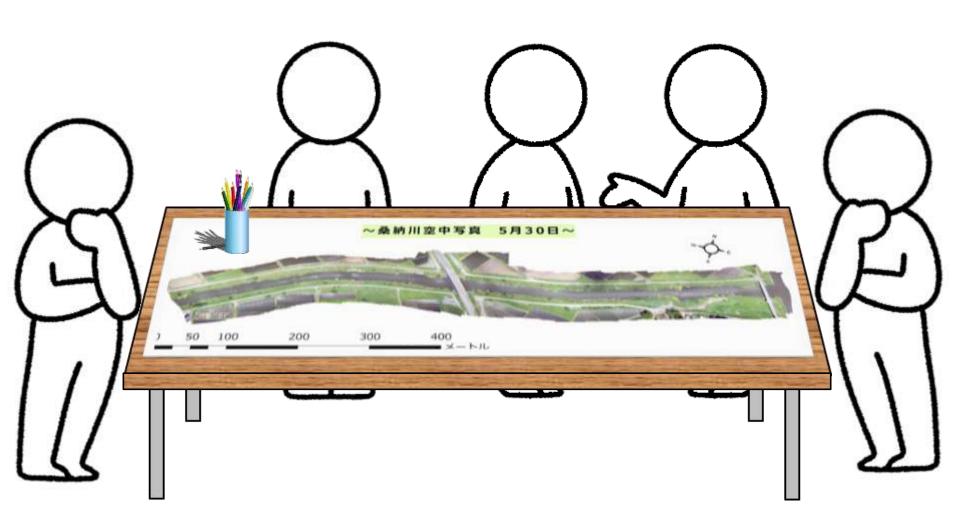
ドローン・リモセンの役割

研究的課題

◆ ナガエツルノゲイトウの動態の解明。 (生長,分布)

社会的課題

- ◆ 群落の分布・面積の記録
- ◆ 駆除作業の記録
 - 結果の記録
 - 効果の検証


ドローン・リモセンの活用

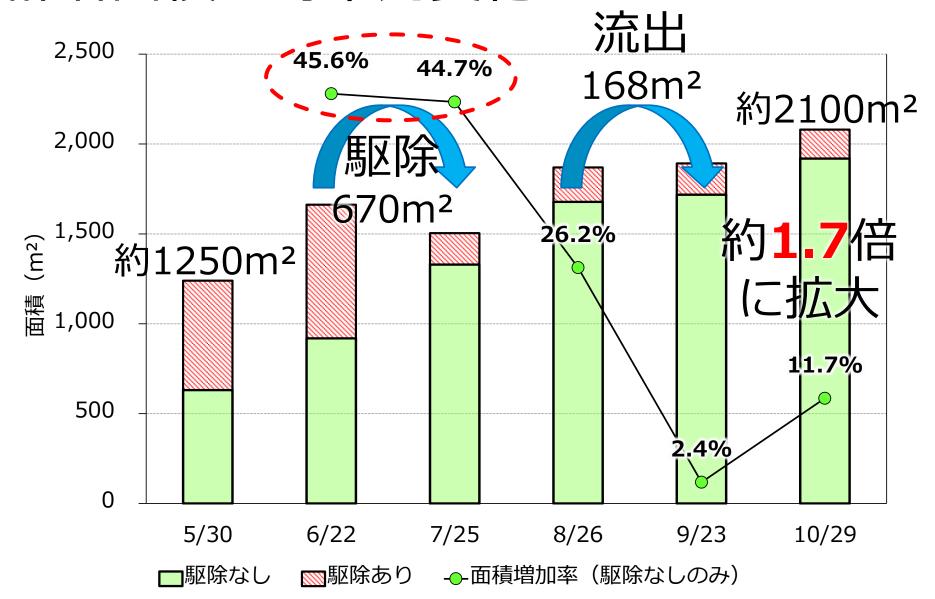
駆除作戦 事前空撮(作業前日) 作業前 → 作業前の群落の記録 作業中 ▶事後空撮 作業終了 →作業後の群落の記録 これまでの解析結果 振り返り

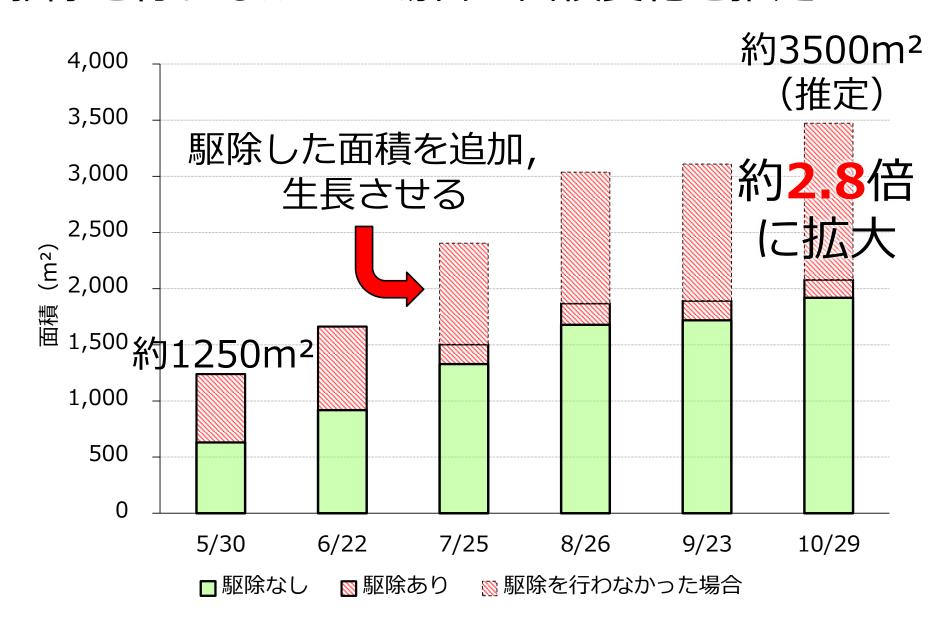
結果の迅速なフィードバック

事前空撮に基づく作業の確認・記録

▶空撮画像上で対象の群落・場所・面積の確認

青空反省会





群落面積の時系列変化

駆除を行わなかった場合の面積変化を推定

ドローン・リモセンによる水稲モニタリング ~生産者との協働~

千葉県:稲作のプロとの協働、ノウハウの蓄積

埼玉県:新規就農者, どろーん米の作成(実利用)

新潟県:ノウハウの蓄積, 社会実装

農業に関わる様々な課題

社会的課題

◆農地の保全と多面的機能の増進

- ◆ 生産者の高齢化,後継者不足,技術の伝承
- ◆ 食糧安全保障
- ◆ 農業のICT化
- ◆精密農業,環境負荷の軽減

NEC Agriculture ICT solution

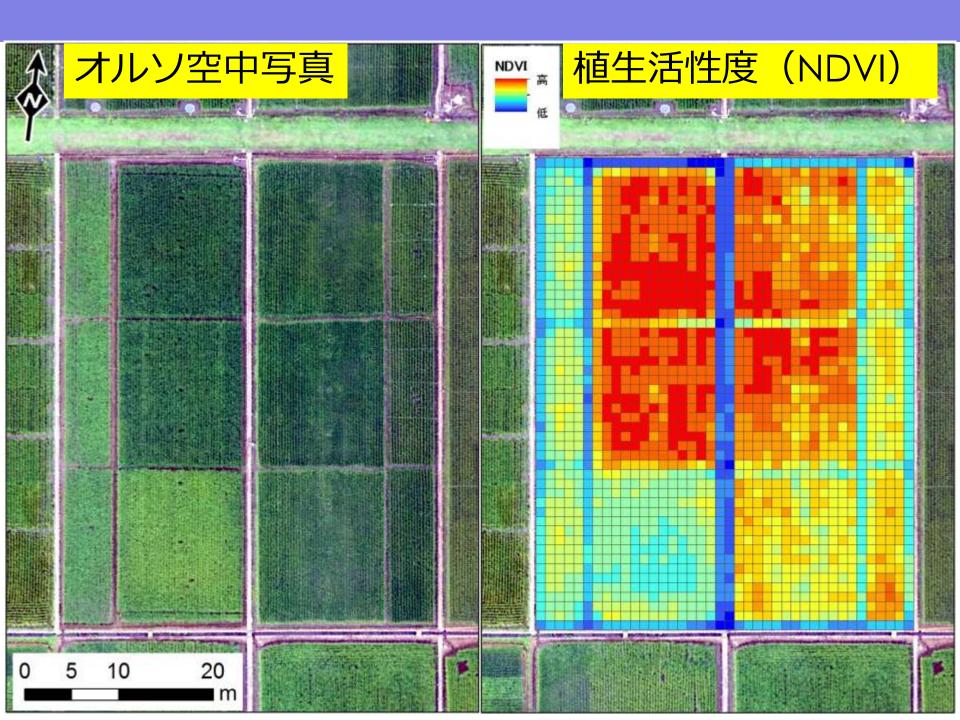
- ◆作物の生育量の定量化(LAI, バイオマス計測)
- ◆生育特性観測

研究の考え方, 進め方

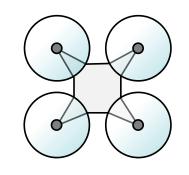
■"農業支援","技術の伝承"

農地を**小労力,低コスト**で管理

- ◆楽に楽しく農業を行うための"楽"農技術
- ▶現場で毎週観測
 - ◆解析結果はすぐにフィードバック・共有
 - **◆生産者の知識, ノウハウ**を吸収



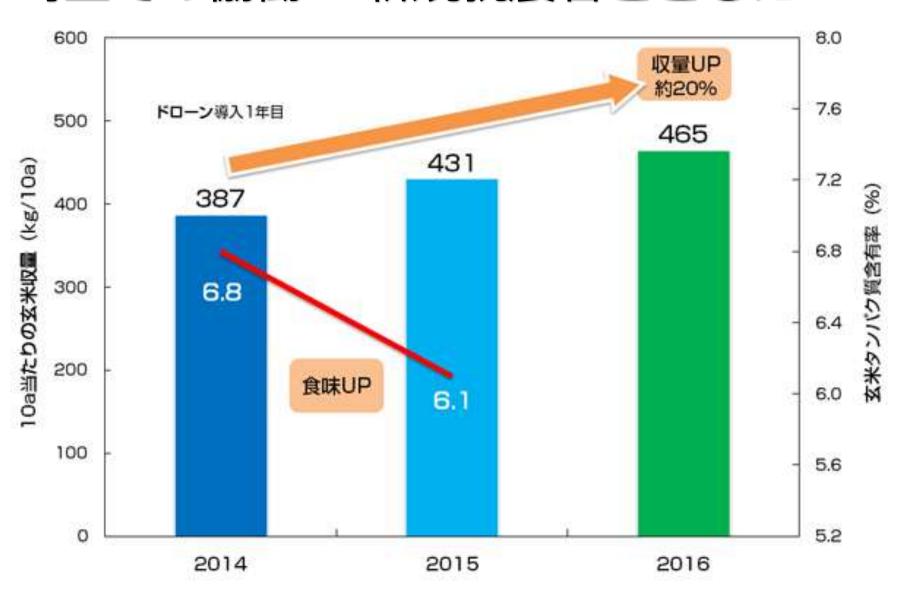
実際の農家がドローンを飛ばす!



稲作のプロによる生育調査の指導

なにができたのか?

- ■圃場内の高低差の確認
- ▶生育むら(生育量)計測
- ▶農作業の適期の決定
- ■倒伏予測
- ■食味推定(たんぱく質含有量の推定)
- ━収量予測
- ■圃場の測量(補助金申請)


ドローン・リモセンによる稲作支援

▶農作業にあわせたドローン・リモセンの利活用

オンデマンド・リモートセンシング

月	4	月	5	月	6	月	7	月		8	}	月	9	月	10月
旬	上旬中	旬下旬	上旬中	旬下旬	上旬	中旬下旬	上旬	中旬下	: 旬	上旬	中化	下旬	上旬中	旬 下 旬	上旬
生育ステージ		播種期	音苗期	移植期		有 効 分 げ 決 定 期	最高分げつ期	穂 形 成	穂ばらみ期	穂	穂乳期	Ŕ	成熟期		
主な農作業	床土準備	播番子種	→ 土壌改良資材布	・ 田植・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	除草剤散布	中干し		糖肥散布						収乾燥護製	
U A V	DSM + *DSM(数值		lt c	OSM ベースマップ		※UAVIこよる生	2G_RBi 10~15日後に追肥 タモニター	DSM or N 倒伏予測 が が り り り り り り り り り り り り り り り り り	出穂13~14日前	NDVI 収量予測	ND\ 食味予測			か(未発 ^{ま野発行の営農情}	W-24-10-10-10-10-10-1

埼玉での協働 ~新規就農者とともに~

埼玉での協働 ~新規就農者とともに~

は、祖父・父からの代替わりを機に自

ら水極栽培を行ない、歯年から得た知

見を栽培に活かすことができるように

う精密農業の得入が各地

配使して生育管理を行な CT (情報通信) 技術を

現在はドロー

花特理・農作業・販売の一連の作業

値として情報化すること

庇者の「勘と経験」 で差み始めています。

を数

適用方法を学びました。

一〇二五年に

ら千葉大学近藤研究室と共同研究でド

ングを行なっています。

二〇一四年か

観測 自分で空から

ーンを用いて上売から水稲の

モニタリ

の井

産業農家の報調ぶり

新米兼業農家、

空からイネの生育診断

ローンによる水稲のモニタ

リングを実

水稲栽培のイロハやドローンの

現在のおが国の農業

農業用ロボッ

4

2016年(年成28年)9月15日(末曜日)

日本地図センターと千葉大

用行を滅に1回、空からのドローンを使い、自律 市販の

が分を号、2つのデータ 素(クロロフィル)を指 からイネの生質の状態を 生もの。 通常のデジカン に撮影した複雑を含次元 イネの草丈が一定以

|メ生育 ドローンで管理

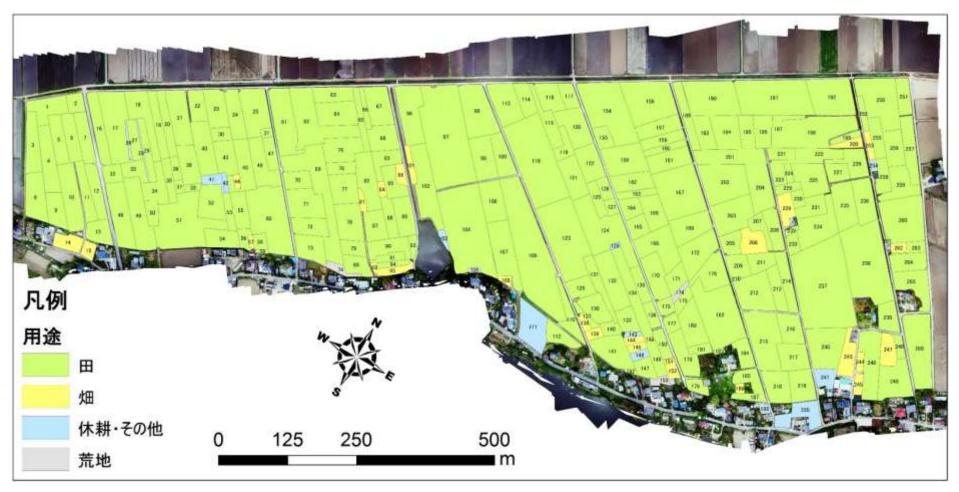
に検出することもできる が分かるという。農家に

かけてデータを集めれ

際が出る。早い設置で個 くなり、収穫作業にも支 ば、刈り取りなどの対処伏の可能性を解如できれ * 状期が分かる。食物する

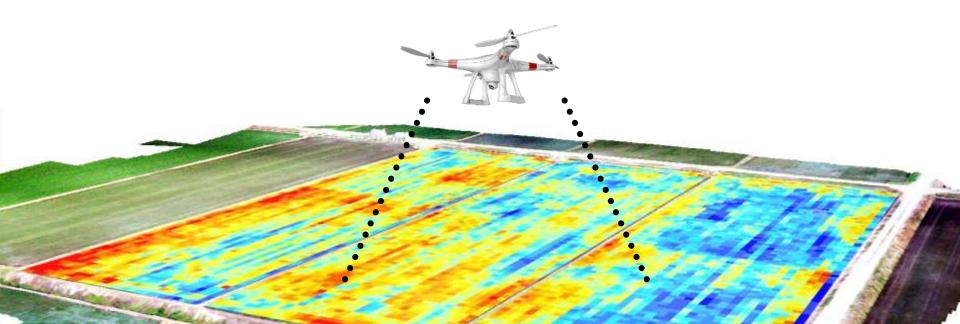
ネの顔状の恐れや、味を左右するたんぱく質の食有量などを指 勝晃した。ドローンが撮影した演像から収量低下につながるイ 大学と共同で、ドローンを使ってコメの生育を管理する手法を日本地図センター(東京・日黒)の田中圭上最研究前は干賞 農業関係者への提供を目指す 画像で収量や味を推定 近赤外線カメラでは、

埼玉での協働 ~新規就農者とともに~


http://dronerice.jp/ にて購入可能 5kg 2,400円

多面的機能支払い交付金の申請(印旛沼土地改良区)

地域の共同活動を支援するための交付金


活動内容,土地の用途,面積によって交付単価が決まっている

圃場の利用用途・面積をドローンで計測

ドローン・リモセンによる市民との協働

- ■オンデマンド・リモートセンシング
 - ◆リモセンが、いつでも、どこでも可能
- ▶ ドローンはフィールドワークのツール
 - ◆ 現場に密着したリモセン

